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Coordinate-free description of corrugated flames with realistic density drop at the front
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The complete set of hydrodynamic equations for a corrugated flame front is reduced to a system of
coordinate-free equations at the front using the fact that the vorticity effects remain relatively weak even for
corrugated flames. It is demonstrated how small but finite flame thickness may be taken into account in the
equations. Similar equations are obtained for turbulent burning in the flamelet regime. The equations for a
turbulent corrugated flame are consistent with the Taylor hypothesis of “stationary” external turbulence.
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[. INTRODUCTION by the conservation laws at a hydrodynamic discontinuity
surface[6] plus the condition of constant velocity; of
One of the most difficult problems of premixed combus-flame propagation with respect to the fuel mixture. However,
tion modeling is the huge difference in length scales in-the growth rate of the DL instability is not limited for a flame
volved in the burning process. While the characteristic lengthront of zero thickness, the evolution problem of an infinitely
scale of the hydrodynamic flow varies from-8.0 cm(car  thin flame cannot be specified self-consistently, and we have
engine$ to several metergturbine combustops the flame  to consider finite flame thickne$$,7]. Small but finite flame
thickness is typically much smalldr;=(10 *—10"3%) cm, thickness may be taken into account as a parameter in the
and the zone of active reaction is even thinneL@[Il]. No  conservation laws at the flame front, which have been ob-
computer can resolve all these length scales at present, amsined in Refs[7,8] for the linear approximation and in Ref.
therefore one of the main tasks of combustion science is tf9] for a strongly curved flame in the nonlinear regime. The
create a reliable model of burning, both turbulent and lami+espective formula for the local velocity of flame propaga-
nar. The problem may be simplified considerably, if onetion depending on the flame stretch has been derived in Refs.
manages to reduce the whole system of combustion equ9,10]. The conservation laws specify step 3 in the above
tions to a single equation for the flame front position. This isprocedure. The solution to the hydrodynamic equations in
possible, for example, for a turbulent flame in the artificialthe fuel mixture ahead of the flame frotgtep 1 is rather
case of zero density variation across the flame front, whesimple in the case of laminar burning, since ahead of the
the ratio of the fuel mixture to burnt gas density is ury  laminar flame the flow is potential no matter how corrugated
=p:/pp=1[2,3]. In that case, a flame front propagates in ais the front. The last and the most difficult part of the algo-
prescribed external turbulent flow without affecting the flow. rithm in the laminar case is to solve the hydrodynamic equa-
However, in reality the expansion fact@r is rather large, tions in the downstream flow behind the flarfstep 3. In-
®=5-10, and the flame interacts strongly with the flow, deed, a curved flame front generates vorticity in the flow,
which leads to many additional phenomena such as thehich makes the flow essentially nonlinddt5]. If we con-
Darrieus-LandayDL) instability [1,4]. As a matter of fact, sider turbulent burning, then the vorticity is nonzero both
attempts to simplify the whole system of combustion equaahead of the flame front and behind the front, which makes
tions for a laminar flame with the expansion fac@miffer-  the problem even more difficult. Therefore, trying to develop
ent from unity have been usually coupled to the studies ofthe model of a turbulent thin flame front, we have to solve
the DL instability, see Ref5] as one of the latest reviews on first a similar laminar problem.
the subject. The basic idea of the simplification is the follow-  Up till now, the problem of laminar corrugated flame dy-
ing. A flame front is typically very thin in comparison with namics has been reduced to a single equation for the flame
the hydrodynamic length scales, and it may be considered dsont position only under simplifying assumptions. Sivashin-
a geometrical surface of zero thickness, separating fuel mixsky has derived an equation of this kind in the limit of small
ture and products of burning. In that case the solution to thé¢hermal expansion® —1<1, assuming also weak nonlin-
combustion equations consists of three stépswe have to  earity of the flame front, i.e., a flame shape differs slightly
solve equations of ideal hydrodynamics in the fuel mixturefrom an ideally planar or ideally spherical frofit1]. In the
ahead of the flame front2) we have to solve equations of case of an arbitrary thermal expansion including realistically
ideal hydrodynamics in the burnt matter behind the flamdarge expansion factor®=5-10, an equation of flame
front; (3) we have to match the obtained solutions at thefront evolution has been derived in R€12] using the same
flame front with the help of conservation laws. If we succeedassumption of weak nonlinearity. The obtained equation de-
in these three steps of solution, then we find a single nonlinscribed successfully the velocity of two-dimensiortaD)
ear equation of the front dynami¢ser a set of equations curved stationary flamesl2,13 and the stability limits of
which contains only values and derivatives at the flame fronthe curved flame§14,15. Unfortunately, the assumption of
but not in the bulk of the gas flow. In the case of a flameweak nonlinearity has rather limited number of applications,
front of zero thickness, the matching conditions are specifiefior example, it cannot be applied to the strongly nonlinear
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fractal flames expected at large hydrodynamic length scales
[5,16—-18. In order to describe fractal flames, we have to
derive an equatiofor a set of equationsat a flame front in F( _

. . ) . . r, )=0
a coordinate-free rotationally invariant form without any re-
striction on the nonlinear terms. Such an equation has beer
derived by Franke[19] in the limit of small thermal expan-
sion ® —1<1, similar to the Sivashinsky equatiofthe fuel mixture
Frankel equation may be reduced to the Sivashinsky equa:
tion for a weakly nonlinear fromt The Frankel equation has
been widely used20—23 because it describes qualitatively
the behavior of strongly corrugated flames. However, the
limit of small thermal expansion®—1<1, adopted by
Frankel is too far from the parameters of realistic flames with -n 'V
the expansion factor® =5— 10 and cannot be utilized for a
guantitative analysis. Therefore, what is needed is an equa-
tion (or a set of equationsat a discontinuous flame front,

written in a coordinate-free form similar to the Frankel equa-W h 0 in the fuel mi e 0i
tion, but taking into account realistically large thermal ex- he ¢ ogsd:(r,fr)b< !nt e ueh mn;]ture an l(r’T).> n
pansion of the burning matter. the products of burning, so that the normal unit veator

In the present paper, we reduce the complete set of hydrg= ¥ F/|VF| points to the products, see Fig. 1. The geometri-

dynamic equations for a corrugated flame front to a systerff® surface,F(r,7)=0, corresponding to the flame front
of coordinate-free equations at the front using the fact thaProPagates in the outward direction with velocitynVs;

the vorticity effects remain relatively weak even for a fractal JF

flame. We demonstrate how small but finite flame thickness V=|VF| 1—. (4)
may be taken into account in the equations. We show that J

similar equations may be obtained for turbulent burning in ) . o )
the flamelet regime. The equations obtained for a turbulej{ﬁhe jump conditions across an infinitely thin flame front are
corrugated flame are consistent with the Taylor hypothesis

stationary” external turbulence. Un s V= 0(U, +Vy), )

FIG. 1. Flame front propagating from a point of ignition.

II. BASIC EQUATIONS FOR AN INFINITELY THIN Upr = U, (6)
FLAME FRONT

We start with the DL approximation of an infinitely thin I, + i(un++vs)2:H—+(un—+Vs)2- 7
flame front. Assume that the gas dynamics of burning is 0
characterized by a length sc&ewhich may be the radius of
a tube, width of a channel, radius of a spherical burnin
chamber, etc. We introduce the dimensionless velocity of th
flow scaled by the velocity of a planar flame froot
=v/U;, together with the scaled coordinates x/R, time
=U;t/R, and pressureﬂz(P—Pf)/pfuf, where p; and
P are density and pressure in the fuel mixture far ahead of U, +Ve=1. )
the flame front. Within the framework of the DL approxima-

tion, the flame is treated as a discontinuity surface of Zequsing Eq(8)’ one can rewrite EqiS)_(7) in the form
thickness propagating at a constant velotlyrelative to the

ere labels " and “ +” correspond to the positions just

head of the flame front and just behind the front, while the
abelsn andt stand for the normal and the tangential direc-
tions. One more condition is that the flame front propagates
at a fixed speed with respect to the fuel mixture,

fuel mixture. The flow is assumed to be incompressible and Upt =Up-+O—1, 9

inviscid, and the hydrodynamic equations upstream and

downstream of a corrugated flame take the form u,=u_+(®—1)n, (10
V-u=0, (1) m,=11_+1-0. (11)

ou Equations(1) and(2) in the upstream and downstream flow
—+(u-V)u=—-9VII, (2)  together with the conditions at flame surfa@—(11) de-
7 scribe the dynamics of an infinitely thin flame front.
Though the systeniEgs. (1), (2), and (8)—(11)] looks
whered=1 in the fuel mixture andy=© in the burnt gas. rather simple, in reality these equations are very difficult

Let the flame front be described by the function even for a numerical study because they require a solution in
the bulk of a gas both ahead of the flame front and behind the
F(r,7)=0. (3 flame. The purpose of the present paper is to reduce the
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whole systen{Egs. (1), (2), and(8)—(11)] to a set of equa- 1
tions at the flame front, which is possible only under certain
simplifying assumptions specified below.
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IIl. THE APPROXIMATION OF SMALL VORTICITY IN 0.5 -
THE FLOW OF THE BURNT MATTER BEHIND A .
CURVED FLAME FRONT .
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In this section, we discuss the simplifying assumptions, i
which can be used in describing the dynamics of corrugatec§ 0
flames. We start with the propagation of a curved laminar .
flame in a tube with boundary conditions of adiabatic walls .
and ideal slip at the walls. The advantage of such a geometn T
is that the shape of a curved flame front in a tube may be
limited by only one stationary cell, which is easier for analy-
sis than the fractal flame shape consisting of a large numbe
of cells of different sizes imposed on each otf&r6]. Ac-
cording to the numerical simulatiof%3,15,24, a flame cell
may be described as a cusp pointing to the burnt matter ani  _; T ———ee—— e S S e e
a hump directed to the fresh fuel mixture. Taking into ac- -1.5 -1 -0.5 0 0.5 1
count the tube geometry, we choose scaled variables in th z/R
form r=(y,£), u=(w,v), where ¢ is the coordinate axis
along the walls. To be particular, we take the reference frame
of a planar flame front, in which the fuel mixture at infinity
moves towards the flame with velocity=e; . As we pointed ©=5—10, both for 2D and 3D geometfy3,15,24. Actu-
out in the Introduction, we are interested first of all in the ally, this small curvature of the flame front is the reason why
flow of the burning products. If the flame front is planar, thenthe analytical theory developed in the limit of weak nonlin-
the velocity and pressure behind the flame are uniform earity is so successful in describing the dynamics of a single
=0e;, II=—-0+1[12], but in the case of a curved flame flame cell[12,14]. The relative role of vorticity in the flow of
the flow is different from the uniform one. Velocity deviation burning products may be specified by the combination
from the planar flow in the products of burning=u  @\/©. It was shown in Ref[12] that the vorticity effects
—Oe,, satisfies the equation behind a curved flame front are as smallaas/© o (f/\)2.

The secondary role of vorticity in the DL instability has been
discussed for a long timel1,19,22. Particularly, it has been
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FIG. 2. Characteristic velocity field behind a curved flame front.

ou u - ~
—+0—<+(u-V)u+OVII=0.

a7 PY: (120  demonstrated in Refl1] that vorticity is just a by-product
of the DL instability, which may be neglected completely for
Equation(12) may be also presented in the form small thermal expansio) —1<1. The assumption of zero
vorticity in the burnt matter was the basis of the Frankel
Ju EVES U2 equation[19]. However, neglecting the vorticity in the burnt
P 0 P8 UXw+V >+ OIT|=0 (13 gas for realistically large expansion factd®s=5—10, one
comes to an incorrect dispersion relation at the linear stage of
or the DL instability. Therefore in the present paper we take
vorticity into account in the linear approximation. We pro-
J J ~ ~ B pose to neglect the last term of E(L4), namely uX o,
ﬁ_r+®(9_§ VXUu=VX(uXw)=0, 14 which stands for the nonlinear coupling between the flame-

where w=V Xu denotes vorticity[6]. The characteristic

generated vorticity and the small deviation of the flow veloc-
ity from the drift velocity. According to the above estimates,

flow behind a curved flame cell obtained in the numericalthe role of this nonlinear term is as small 59<w|>\/2

simulationg 13] is shown in Fig. 2. An important point about o (f/\)3=0.01—

0.04, which is definitely beyond the com-

Fig. 2 is that, in spite of the curved flame shape, the mainy iational accuracy of the direct numerical simulations
velocity component in the flow of the burnt matter is deter-[13 15,24. Using such an approximatidbelow we will call

mined by the uniform drift velocitye,, while the velocity
deviation from the uniform flow is rather wealt<®. Ac-

it the approximation of small vorticiy we reproduce cor-
rectly the linear dispersion relation of the DL instability for

cording to Ref[12], the relative role of the velocity devia- any expansion factor of the burning matter. Indeed, in that
tion may be estimated ag®«f/\, wheref and\ are the case Eq(14) becomes

characteristic amplitude and width of the flame cell. Direct
numerical simulations of the flame dynamics show that the
amplitude of one cell of a curved flame is rather sm&lh

h” . X U=
=0.25-0.35, even for realistically large thermal expansion, Vxu=0,

(15

Jd +0 Jd
aT ¢
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with the solutions corresponding to the mode of vorticity which reproduces correctly the DL dispersion relation for

drift,
02 )t,=0 16
97 07_§ u,=9, (16)
and to the potential mod® x u,=0, V2u,=0 with
-~ 1 (.- _ )
vp=4—wzf vpkexp(—ké+ik-y)dak, (17)
Wo=—d71V, 7. (18)
Here ® stands for the DL operator,
R 1 _
OF = —f kF, exp(ik-y)d2k, (19
4172

whereF, is the Fourier transform df, andV , corresponds
to theV component in the plane perpendicular to the walls

One more important property of the potential mode is

T2

~ u
E_-F@(?—g Up+V 74‘@1_[ =0,

d a
( (20

which means that the dynamical pressur&2+ ©1I1, satis-
fies the Laplace equation in the burnt matter,

T2

2| 1 _
V2| > +6I1|=0. (21

any thermal expansion including the realistically large ex-
pansion factor® =5—10[6]. It is important that we do not
neglect the mode of vorticity drift, in the burnt matter
behind a corrugated flame front, but instead we neglect only
the nonlinear coupling between the potential mode and the
vorticity mode. Neglecting vorticity completely similar to
Refs.[11,19,223, we would come to another dispersion rela-
tion

af -1,
— — —~®f=0,

ar 2 27)
which holds only in the limit of small thermal expansién
—1<1. For realistically large expansion facto®=5
—10, dispersion relatiofi27) provides only qualitative, but
not quantitative description of the DL instability. On the con-
trary, the present approximation of small but nonzero vortic-
ity allows both the qualitative and the quantitative studies of
the flame instability.

Taking into account the nonlinear corrections to E@$)

-and (26) in the limit of weak nonlinearity ¥, f)2<1, we

can demonstrate that the approximation of small vorticity
describes well the propagation velocity of curved stationary
flames and stability limits of these flames. As a matter of
fact, in that case we just have to reproduce the calculations of
Refs.[12,14), which is a long, but straightforward, proce-
dure. A much subtler question is if the approximation of
small vorticity can describe properly the dynamics of
strongly corrugated fractal flames. A fractal structure implies
the self-similar properties of a flame front at different length
scales[5,16,17. Because of the self-similarity every large
cell at a flame front reproduces the shape of small cells like

Obviously, the dynamical pressure obeys the Laplace equéhose observed for the flames propagating in relatively nar-

tion in the fuel mixture ahead of the flame front too becausd®W tubes[13,15,24. Then the characteristic ratit/n re-
the flow in the fuel mixture is potential. The solution to Eq. Mains small for any cell of the fractal cascade, and the non-

(15) in the fuel mixture is

~ 1 (-~
v=1+v=1+—fvkeXFXk§+ik~y)d2k, (22
41

w=d"1v 7, (23
n=l_ga? ¥ 24
2P a7 9

Taking matching conditiong10), (11) at a flame front,
F(r,7)=&—1(y,7)=0, in the linear approximation

Vi=vo, We=w_—(0-1)V f, v_=—

JaT (25

and substituting the mod¢€$6)—(18), (22)—(24), we come to
the equation for the flame front perturbations,

9°f . of ~,
(0+1)— +20d-——0(0—1)d?*f=0,
aT T

o (26)

linear effects related to the flame-generated vorticity may be
neglected even for strongly corrugated fractal flames.

IV. COORDINATE-FREE EQUATION AT A FLAME FRONT
OF ZERO THICKNESS

In the present section, we derive coordinate-free equations
at a flame front of zero thickness ignited at a point. Taking
into account the approximation of small vorticity, in the labo-
ratory reference frame, we can write Eg) in the form

Jou

(97_+Vp=0,

(28)

wherep= 911+ u?/2 is the dynamic pressure. All variables
at the flame fron{e.g.,u_, u,, Vs, etc) depend on time
and on the coordinate along the frant see Fig. 1. Respec-
tive derivatives in spac¥ ¢ coincide with the tangential de-
rivative along the flame fronty,=¢-V, but the time de-
rivative is related to the normal derivative in space,

a—&Vﬁ 29
S= Ve (29)
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since the flame front propagates locally with the velocity whereB=4 if r is insideG, f=2 if r is on the surfac&,
—nVs. The velocity field ahead of the flame front is poten-and =0 if r is outsideG. Then potentialsp_, ¢, at the
tial, u=V ¢, V2¢4=0, which leads to the Bernoulli integral flame front satisfy the following equations:

d
——+p=0, (30) :i” 1- s
ar (1) o o Jre— | r—1|? dS(rs),
taking the form (39
dp- 1 O®—V,—u
U, +p.=0 31) :__ff O~ Vs Ut
JTs son d (1) > S rs_r|
exactly at the flame front. The velocity field behind the flame
may be presented as a combination of a potential mode and a +¢.n- dS(ry), (39
vorticity mode u=u,+u,, satisfying the equationsi, Ire—r[3
=V, V2¢=0, and
where all the values under the integrals dependgexcept
au, —0 32) for r, of course. Equations(38) and(39) are integral equa-
or tions, which determine the velocity potentials at the flame

front, if the vorticity component of the velocity field is
It is interesting to note that the vorticity mode is time inde- known just behind the flame. Therefore, we have to find the
pendent in the approximation of small vorticity similar to the relation between the potential modes and the vorticity mode
well-known solution of the DL instability at a spherical flame at the flame front. For that purpose, we write the continuity
propagating outwards from a point of igniti¢@6]. Taking  equation(1) for the vorticity mode in the form
into account Eq(29), the last property may be also presented
as Wy

an ———+ Vs U, =0, (40

au, au,

g Ven (33

and using Eq(33) we reduce it to

The respective Bernoulli integral at the flame front in the

. auvn+
burnt matter is e =V Vg Uyt (41)
9+ +Vyn, + const. (34
97 sUpn+ TP+= The jump condition for the tangential velocity_=u,. ,

[Eq. (6)], leads tou; —up, = U, and couples the tangen-
Taking into account that the velocity potential is defined withtial velocity component of the vorticity mode and the veloc-
the accuracy of a time-dependent funct[@h, we may drop ity potentials as
the constant in the last equation. The boundary conditions for

the velocity potentials at the flame front follow from E8) Vb —d.)=Uy. . (42)
and(9),

3 Then, taking into account E@¢41) we find the desired rela-

&=un,=1—v5, (35  tion between the potential modes and the normal velocity

an component of the vorticity mode used in E§9):
% = =0—-V— 36 + 2
gn ~Ueme =07 VsTlune (36 =V Vb~ ). (43
S

According to the Green solution to the Laplace equation,
harmonic functionV2¢=0 at a pointr of a domainG with

a surfaceS and a normal unit vectan,; pointing outwards
may be found using the boundary conditions at the surface;

pon-| I

+¢><rs>nom-ﬁ1dars>, 37

q:inally, we have to couple the potentials. For that purpose,
we substitute Eqs31) and (34) into the condition of pres-
sure jump at the flame frori.1),

2 2

(9¢(I’) —(gz')Jr ®¢) CI(CE 1)_u_+® Vln+
|rs—r| 0nout ITs

+VeU,ne +OVau,_ . (44)
Using Eqgs.(8)—(10), we can reduce Ed44) to
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-1 0O+1
(p—Op)=——U2 —(O—-1)V2+(O-1)V Jf
0TS(¢+ ¢-)=— ( )Vs+( Vs V(N+ g7 b-(N=5_ |rs_r|
v+ O 45
tons 5 9 SOrEgn ]dsus)
rg—r
Introducing the designations (48)
—-0O¢_ u,
_ ¢+ ¢ , Q: n+ , (46) (99 5
0-1 6-1 =V Vg W), (49)
S
we can rewrite the final set of equations at the flame front in
the form o 1., 0-1
o a—TS—EU,—VS-F(l-FQ)VS—FT (50)
()= r
-(N)= f j |fs—f| |rs—r|31 dsra). Besides, velocity just ahead of the flame front is determined

(47)  from Eq.(37) as

rs—r
:_JJ’{(]- Vs) |3 —¢- 3”(| _rl )1ds(rs) (51

Then the flame front velocity may be calculated ¥s  Equation(53) may be also reduced to the Sivashinsky equa-
=u,_—1 [Eqg. (8)], using Eqg.(51). The system of Eqgs. tion[11]in the case of weak nonlinearity, see Rgf9].
(47—(51) contains only values and variables at the flame An interesting feature of Eq$47)—(51) is that the system
front, thus reducing the 3D problefigs.(1), (2), (8)—(11)]  obtained involves indirectly the second-order derivative in
in the bulk of the gas flow to a 2D problem of the flame time, contrary to the Sivashinsky and Frankel equations
dynamics as a discontinuity surface. which are only of the first order. The difference between the
The system of Eqsi47)—(51) holds for any thermal ex- equations of the second and the first order in time may be
pansion of the burning matter including the realistic expancrucial in the description of phenomena such as “[u”p

sion factors®=5-10, when the corrugated flame shapeflames”[27] and flame-shock interactidi28,29.
generates vorticity behind the flame front. It is interesting to

compare the above equations to the Frankel equdti®h

obtained under Fhe assumption of a potential flow in the V. EQUATIONS AT A FLAME FRONT

burnt matter. As is kr_10wn, the flow of the burnt gas may _be OF FINITE THICKNESS

treated as potential in the case of small thermal expansion,

®—1<1 [11]. In that case, Eq(49) takes the form of the In the preceding section we have considered equations at

Laplace equation on a closed surfa§&(¢_+W)=0, an infinitely thin flame front. However, according to the DL
which has the only solutiogs_ +¥ =const. Since the po- theory, the instability growth rate of small perturbations at a
tential of a double layer with constant density is also conflame front is infinitely large if the perturbation wavelength
stant, then, in agreement with Rg19], Eq. (48) reduces to  is not limited from below by the cut off wavelength.

the velocity potential of a single layer, =\./R (proportional to the finite flame thicknessn order
to describe the thermal stabilization of the DL instability one
0 dsiry) has to tal_<e into account the. finite flame.thickness in the
d_(r)=— yp= f L“ - -+ const. (52 conservation law$5)—(7) [9]. Rigorous consideration of the
S

finite flame thickness in Eqg5)—(7) requires rather long
calculations and will be presented elsewhere. In the present
Then after calculations, similar to R¢fL9], we come to the section, we demonstrate how the effects of the thermal sta-

Frankel equation bilization may be taken into account in the syst¢Eys.
(47)—(51)] in a simplified way similar to the classical Mark-
O—1 1 g 1 stein approach30]. For that purpose, we can observe that
Vg—1l=—u,_ . =—5— —f f dS(ry) the development of the DL instability at both linear and non-
2 2m) Json|rg . . ;
linear stages involves only one parameter of length dimen-

sion, namely the cutoff wavelengit, [9,12—-14. Similar to
(53 the Markstein approach, we take E8) in the form
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Up-+Ve=1—AY, (54) where A.=\./R is the scaled cutoff wavelength of the DL
instability (the dimensional value of the cutoff wavelength
whereY is stretch of the flame fror(relative increase of the . =A_ R may be measured experimentgB2]).
elementary surface arel at the flame front per unit time, Takmg into account the stretch effects, we find the follow-
Y=A"1dA/d7g [31]) and A is a coefficient characterizing ing boundary conditions for the velocity potential:
the thermal stabilization of the DL instability. Other conser-

vation laws(9)—(11) are considered without any change. We I
are going to find the relation betwednand A ;. and useA . ——=u,_=1-V,—AY, (61)

instead ofA. In the linear case of a slightly perturbed flame an
front propagating in a tube, stretch may be calculatefPas
J
Y=V, -w_+V?f, (55) %wpm:@—vs—@/\v—uw, (62)

and one has to replace the last equation of (26) by
and the solution to the Laplace equation at the flame front,

of - )
LU= AV, -w_+V7T). (56)
1-Ve—AY T
Then the systerfEgs.(16)—(18), (22)—(25), (56)] reduces to ¢-(r)= zwff |fs—f| +é-n- |r—r|3 dS(ry),
the dispersion equation (63
e O+1.].0f
O+1)—+20 1+A—q> d— O—-V;—OAY—u,
(O+1)- 26 } pun=- 5| [P
—(@—1)[ - b|d2f=0. (57 re—r
0-1 +¢.n- T dS(ry). (64)
S

As we can see from E@57), the DL instability is stabilized

at the perturbation wave numblg, satisfying The relation(43) is not affected by the finite flame stretch,

but Eqg.(45) is reduces to

Ak ®+1—O 8
1=-Akeg—7=0 (58)
(9 J—
which corresponds to the cutoff wavelength.=2m/k., 5 (9+=0¢_)= U2 —(O-1)Vi+(0-1)V,
that is, ®
FVlye —(O—1)(Ve+ O —1)AY
E @_1A o n+2 (Vs
2m O+1°% SO v (65)
Thus Eq.(54) takes the form
1 60-1 ; i
V=1 ALY, (60) Then the final set of equations at the flame front takes the
27 0+1 form
|
- 1ff L[, @-1AY Sy .
¢-(r)=5- o Tre—1] STOIL 27 +¢—n'm Sry), (66)
- Jf 14 O-1A.Y - rg—r 5
(I’) 277 |rs—r| ®+1 2 ( +(b_)l"l'| _ |3 S(rs) ( 7)
o VA v 68
Fra s(p_+W), (68)
MW _ Lo e aeave OTEAY G o1+ @21, (O 1A.Y\? .
gry U VST ANV G S Vet Ot ®+1 27 69
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The scaled cutoff wavelength of the DL instability., is  bulence[1], which follows from Eq.(28) applied to the tur-

the only parameter of length dimension involved in Egs.bulent flow of the fuel mixture. The Taylor hypothesis has
(66)—(69) and, obviouslyA . is the smallest length scale that not been proven rigorously, but it was used in the majority of
has to be resolved in the numerical solution to the aboveapers devoted to turbulent burning in the flamelet regime,

equations. see, for example, Reff3,21,33. The recent investigation of
the flame dynamics in a flow with temporal pulsations of
VI. EQUATIONS AT A TURBULENT FLAME FRONT external turbulent velocity34] has demonstrated that the

Taylor hypothesis does provide a good model for the flamelet
In this section, we will show how external turbulence mayyegime of burning.

be included into Eqsi66)—-(69) using the approximation of  |n the case of turbulent flames, the upstream flow in the
small vorticity both upstream and downstream the flameqyel mixture contains both a potential mode and a turbulent
turbulent burning has been discussed recently in Refshe velocity potential at the flame front is
[21,22, where vorticity has been neglected completely. The
approximation of the present paper is much less restrictive, dp_
though, of course, the accuracy of such an approximation is “on
considerably lower for turbulent flames in comparison with
the laminar ones because the vorticity effects are obviouslyhereue,,_ is the normal component of the external turbu-
stronger for turbulent flames. Still, the present approximatiorient velocity at the flame front, and the respective solution to
is consistent with the Taylor hypothesis of “stationary” tur- the Laplace equation ahead of the front is

=Upp-=Up_—Uep-=1—Vs—Ug,- —AY, (70

1 1 ( 0-1 ACY) re—r
¢7(f)—zf fs =] 1=Vs—Uen-—gT1 24 +¢Ln'm ds(ry), (71)

with the velocity in the fuel mixture at the flame front,

1
U,:Ue‘i‘ﬂ S

The equation relating the vorticity modes and the potential modes at the flame front takes the form

O—-1AY)\ rg—r a | re—r
) (—) dS(rs). (72)

B O+1 27 |rs—r|3_¢7(9_n

(1_Vs_uen lrs—r|®

J _ 2
a_q_s(uvn+_uenf)_vsvs(¢f_¢+)r (73)

while the equation coupling two potential modes upstream and downstream the flame front coincides v@8). Htpen the
final system of equations at a turbulent flame front is

1 1 O-1A.Y rs—r d
¢_(r)—ﬂf fsm 1_Vs_uen—_m oy _n~| _r|3 S(ry), (74)
v 0+1 B 1JJ 1 0 Uen 1 O-1A.Y ¥ rs—r q 75
J Uen- 2
S
av 1, Ve l1 OUen alv @—1ACYV 61 0-1 L O-1A.Y\? .
i L o B A i e B R T ra i (79

Of course, in reality the turbulent velocity field, at the  and car engines is very limited. Though the standard assump-
flame front does not coincide with the velocity field far tion about the external velocity field used in the numerical
ahead of the flame front. However, the present knowledgeimulations[21,22,33,34 is the assumption of an isotropic
about the initial “free” turbulence induced in gas turbines Kolmogorov turbulence, one cannot say for sure that such a
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turbulence takes place in combustion experimg235,3§  Equation(80) is the 2D counterpart of Eq47). The coun-
and in industrial energy production devices. Therefore, interpart of Eq.(48) follows from Eqgs.(79) and (80),

stead of making assumptions about turbulence far ahead of
the flame front, at present one can make assumptions directly

s fi 0+1 1
about the turbulent velocity field at the flame front. W (r)+ . ¢7(r):;f (Q—1)In|re—r|
- s

VII. EQUATIONS AT A FLAME FRONT IN A
TWO-DIMENSIONAL GEOMETRY (TN rs_rzlds(rs)_
Though Eqgs(74)—(77) do reduce the hydrodynamic prob- Ire—rl
lem in the bulk of the gas flow to a set of equations at the (81)
flame front, the resulting system is still rather difficult for
numerical solution. By this reason, it is natural to expect that . . )
the first modeling of Eqs(74)—(77) will be performed in the ~Equation(49) and (50) remain the same in the 2D geometry
2D geometry rather than in the 3D one. In this section, wedS they were in the 3D one,
present the 2D version of the systéigs. (74)—(77)], for
which the flame front is a corrugated loop instead of a sur- 90
face. We start with the infinitely thin laminar flame. In that e —VSV§(¢,+\P), (82
case, the integral expression for the Green solution to the Ts
Laplace equatiori37) takes the form
Ap(ry) re—r £=1u2—v2+(1+9)v + (83
y¢(r>=” o Inlre=r] = G(roNoye ——— |dS(ry), grs 2 ° o2
S Nout |rs— r|
(78)

and the velocity just ahead of the flame front may be found
where the curveS is the boundary of a 2D domai@. The  from Eq.(79):

factor y is zero (y=0) if r is outsideG, y= if r belongs
to the curveS andy=2 if r is insideG. Therefore, at the

flame front we have the following expressions for the veloc- 1 (1-vV Fs—
ity potentials: u-(N=57 s ( S)|rs—r|2
¢+(r):_£f (G-Vs—u n+)|n|rs_r| +¢ i il dS(ry) (84)
m)s ! ~dn |rs—r|2 o
re—r
—¢.n: m dS(rs), (79 The set of equation$80)—(84) presents a coordinate-free
S

description of 2D laminar flames with infinitely small flame
; thickness. Similar to Secs. V and VI, we may take into ac-
—

P (f)=£f{(1—Vs)|n|fs—r|—¢ n. r ]dS(rs). count stretch effect@roduced by finite flame thicknesand
w7 wls Clrer?

external turbulence. Then the syst¢kys. (80)—(84)] takes
(80)  the form

_1f 1-v 0-1 ACYI rs—r q 85

¢,(r)—; JIETVsTlen g7 20 nlrs—r|—¢,n~m Srs), (85)

v +®+1 —lf Q- e 1+®_1A°Y| (U + 1 1y 86

D+ g=19-0=7 ) |2 -1 Mor1 27 s TIH (I SN g ASIE), (86)
g ten |y Vi +W) (87)
a7 0-1 stsl®-TH0

av 1, vesl1 OUen v @—1ACYV 01 0-1 L O-1A.Y\? -

g 2U Vst 1T g P Vst gt o VPO D I grT o ) | (88)
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re—r s (9( re—r )
|rs_r|2 - an |rs_r|2

ds(ry). (89

O—1A.Y
T 0+1 27

1
U_(r)y=ue— EL (l—vs— Uen—

VIII. SUMMARY actions is usually about 0.1 of the flame thickness, see Refs.

3,15,24. On the other hand, the cutoff wavelength typi-
In the present paper, we have reduced the whole system ?’;ﬂly exceeds the flame thickness by a factor of-%0

hydrodynamic equations in the bulk of the gas flow ahead o .
a corrugated flame front and behind the front to a set o 7.’37]' Thus the Cum.ﬁ wavelength.c is larger than the
hickness of the reaction zone by a factor of 4@DO.

equations at the flame front; see E¢&7)—(50) for a lami- . )
nar flame front of zero thickness, Eq66)—(69) for a lami- With all these advantages of the obtained equat{dns—_ .
(77), one may hope to model turbulent burning in realistic

nar flame front of finite thickness, and Eq$4)—(77) for a ducti devi ¢ hich the ch reristi
flame front in an external turbulent flow. The derived equa-ﬁnert%y pr? ucfl?r? he\(/;ceds, or. Wﬂ N &gog aractenstic
tions may provide considerable gain in the numerical simu-cn9th scale ot the hydrodynamic flow ( ) cm ex-

lations of laminar and turbulent corrugated flames in theceedS the thickness of the reaction zone byGorders of

flamelet regime. First, the derived equations reduce the dir_nagnitude, making these flows far beyond the reach of the

mension of the problem by one, since a 3D problem of thedirect numerical simulations. Still, as a next step of the re-
gas flow is replaced by a 2D broblem of the flame frontsearCh’ the equations obtained have to be validated by com-

dynamics considered as a geometrical surface. Second tﬁgring th‘? numerical_resul_ts of the mOd?' to_the experim_ents
'.and the direct numerical simulations. This will be the subject

smallest length scale involved in the equations, which has t8
be resolved in the numerical simulations, is the cutoff wave—Of the future work.
length of the DL instability\.. This length scale is almost

three orders of magnitude larger that the thickness of the
reaction zone, which has to be resolved in the direct numeri-

cal simulations. Indeed, the thickness of the reaction zone This work was supported by the Swedish Research Coun-
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