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Coordinate-free description of corrugated flames with realistic density drop at the front
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The complete set of hydrodynamic equations for a corrugated flame front is reduced to a system of
coordinate-free equations at the front using the fact that the vorticity effects remain relatively weak even for
corrugated flames. It is demonstrated how small but finite flame thickness may be taken into account in the
equations. Similar equations are obtained for turbulent burning in the flamelet regime. The equations for a
turbulent corrugated flame are consistent with the Taylor hypothesis of ‘‘stationary’’ external turbulence.
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I. INTRODUCTION

One of the most difficult problems of premixed combu
tion modeling is the huge difference in length scales
volved in the burning process. While the characteristic len
scale of the hydrodynamic flow varies from 5210 cm ~car
engines! to several meters~turbine combustors!, the flame
thickness is typically much smallerL f5(102421023) cm,
and the zone of active reaction is even thinner 0.1L f @1#. No
computer can resolve all these length scales at present
therefore one of the main tasks of combustion science i
create a reliable model of burning, both turbulent and la
nar. The problem may be simplified considerably, if o
manages to reduce the whole system of combustion e
tions to a single equation for the flame front position. This
possible, for example, for a turbulent flame in the artific
case of zero density variation across the flame front, w
the ratio of the fuel mixture to burnt gas density is unityQ
[r f /rb51 @2,3#. In that case, a flame front propagates in
prescribed external turbulent flow without affecting the flo
However, in reality the expansion factorQ is rather large,
Q55210, and the flame interacts strongly with the flo
which leads to many additional phenomena such as
Darrieus-Landau~DL! instability @1,4#. As a matter of fact,
attempts to simplify the whole system of combustion eq
tions for a laminar flame with the expansion factorQ differ-
ent from unity have been usually coupled to the studies
the DL instability, see Ref.@5# as one of the latest reviews o
the subject. The basic idea of the simplification is the follo
ing. A flame front is typically very thin in comparison wit
the hydrodynamic length scales, and it may be considere
a geometrical surface of zero thickness, separating fuel m
ture and products of burning. In that case the solution to
combustion equations consists of three steps:~1! we have to
solve equations of ideal hydrodynamics in the fuel mixtu
ahead of the flame front;~2! we have to solve equations o
ideal hydrodynamics in the burnt matter behind the fla
front; ~3! we have to match the obtained solutions at
flame front with the help of conservation laws. If we succe
in these three steps of solution, then we find a single non
ear equation of the front dynamics~or a set of equations!,
which contains only values and derivatives at the flame fr
but not in the bulk of the gas flow. In the case of a flam
front of zero thickness, the matching conditions are speci
1063-651X/2003/68~2!/026312~11!/$20.00 68 0263
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by the conservation laws at a hydrodynamic discontinu
surface @6# plus the condition of constant velocityU f of
flame propagation with respect to the fuel mixture. Howev
the growth rate of the DL instability is not limited for a flam
front of zero thickness, the evolution problem of an infinite
thin flame cannot be specified self-consistently, and we h
to consider finite flame thickness@1,7#. Small but finite flame
thickness may be taken into account as a parameter in
conservation laws at the flame front, which have been
tained in Refs.@7,8# for the linear approximation and in Re
@9# for a strongly curved flame in the nonlinear regime. T
respective formula for the local velocity of flame propag
tion depending on the flame stretch has been derived in R
@9,10#. The conservation laws specify step 3 in the abo
procedure. The solution to the hydrodynamic equations
the fuel mixture ahead of the flame front~step 1! is rather
simple in the case of laminar burning, since ahead of
laminar flame the flow is potential no matter how corruga
is the front. The last and the most difficult part of the alg
rithm in the laminar case is to solve the hydrodynamic eq
tions in the downstream flow behind the flame~step 2!. In-
deed, a curved flame front generates vorticity in the flo
which makes the flow essentially nonlinear@4,5#. If we con-
sider turbulent burning, then the vorticity is nonzero bo
ahead of the flame front and behind the front, which ma
the problem even more difficult. Therefore, trying to devel
the model of a turbulent thin flame front, we have to sol
first a similar laminar problem.

Up till now, the problem of laminar corrugated flame d
namics has been reduced to a single equation for the fl
front position only under simplifying assumptions. Sivash
sky has derived an equation of this kind in the limit of sm
thermal expansion,Q21!1, assuming also weak nonlin
earity of the flame front, i.e., a flame shape differs sligh
from an ideally planar or ideally spherical front@11#. In the
case of an arbitrary thermal expansion including realistica
large expansion factorsQ55210, an equation of flame
front evolution has been derived in Ref.@12# using the same
assumption of weak nonlinearity. The obtained equation
scribed successfully the velocity of two-dimensional~2D!
curved stationary flames@12,13# and the stability limits of
the curved flames@14,15#. Unfortunately, the assumption o
weak nonlinearity has rather limited number of applicatio
for example, it cannot be applied to the strongly nonline
©2003 The American Physical Society12-1
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fractal flames expected at large hydrodynamic length sc
@5,16–18#. In order to describe fractal flames, we have
derive an equation~or a set of equations! at a flame front in
a coordinate-free rotationally invariant form without any r
striction on the nonlinear terms. Such an equation has b
derived by Frankel@19# in the limit of small thermal expan
sion Q21!1, similar to the Sivashinsky equation~the
Frankel equation may be reduced to the Sivashinsky eq
tion for a weakly nonlinear front!. The Frankel equation ha
been widely used@20–23# because it describes qualitative
the behavior of strongly corrugated flames. However,
limit of small thermal expansion,Q21!1, adopted by
Frankel is too far from the parameters of realistic flames w
the expansion factorsQ55210 and cannot be utilized for
quantitative analysis. Therefore, what is needed is an e
tion ~or a set of equations! at a discontinuous flame fron
written in a coordinate-free form similar to the Frankel equ
tion, but taking into account realistically large thermal e
pansion of the burning matter.

In the present paper, we reduce the complete set of hy
dynamic equations for a corrugated flame front to a sys
of coordinate-free equations at the front using the fact t
the vorticity effects remain relatively weak even for a frac
flame. We demonstrate how small but finite flame thickn
may be taken into account in the equations. We show
similar equations may be obtained for turbulent burning
the flamelet regime. The equations obtained for a turbu
corrugated flame are consistent with the Taylor hypothesi
‘‘stationary’’ external turbulence.

II. BASIC EQUATIONS FOR AN INFINITELY THIN
FLAME FRONT

We start with the DL approximation of an infinitely thi
flame front. Assume that the gas dynamics of burning
characterized by a length scaleR, which may be the radius o
a tube, width of a channel, radius of a spherical burn
chamber, etc. We introduce the dimensionless velocity of
flow scaled by the velocity of a planar flame frontu
5v/U f , together with the scaled coordinatesr5x/R, time
t5U ft/R, and pressureP5(P2Pf)/r fU f

2 , wherer f and
Pf are density and pressure in the fuel mixture far ahead
the flame front. Within the framework of the DL approxim
tion, the flame is treated as a discontinuity surface of z
thickness propagating at a constant velocityU f relative to the
fuel mixture. The flow is assumed to be incompressible a
inviscid, and the hydrodynamic equations upstream
downstream of a corrugated flame take the form

“•u50, ~1!

]u

]t
1~u•“ !u52q“P, ~2!

whereq51 in the fuel mixture andq5Q in the burnt gas.
Let the flame front be described by the function

F~r ,t!50. ~3!
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We chooseF(r ,t),0 in the fuel mixture andF(r ,t).0 in
the products of burning, so that the normal unit vectorn
5“F/u“Fu points to the products, see Fig. 1. The geome
cal surface,F(r ,t)50, corresponding to the flame fron
propagates in the outward direction with velocity2nVs ;

Vs5u“Fu21
]F

]t
. ~4!

The jump conditions across an infinitely thin flame front a
@6#

un11Vs5Q~un21Vs!, ~5!

ut15ut2 , ~6!

P11
1

Q
~un11Vs!

25P21~un21Vs!
2. ~7!

Here labels ‘‘2 ’’ and ‘‘ 1 ’’ correspond to the positions jus
ahead of the flame front and just behind the front, while
labelsn and t stand for the normal and the tangential dire
tions. One more condition is that the flame front propaga
at a fixed speed with respect to the fuel mixture,

un21Vs51. ~8!

Using Eq.~8!, one can rewrite Eqs.~5!–~7! in the form

un15un21Q21, ~9!

u15u21~Q21!n, ~10!

P15P2112Q. ~11!

Equations~1! and ~2! in the upstream and downstream flo
together with the conditions at flame surface~8!–~11! de-
scribe the dynamics of an infinitely thin flame front.

Though the system@Eqs. ~1!, ~2!, and ~8!–~11!# looks
rather simple, in reality these equations are very diffic
even for a numerical study because they require a solutio
the bulk of a gas both ahead of the flame front and behind
flame. The purpose of the present paper is to reduce

FIG. 1. Flame front propagating from a point of ignition.
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COORDINATE-FREE DESCRIPTION OF CORRUGATED . . . PHYSICAL REVIEW E68, 026312 ~2003!
whole system@Eqs. ~1!, ~2!, and ~8!–~11!# to a set of equa-
tions at the flame front, which is possible only under cert
simplifying assumptions specified below.

III. THE APPROXIMATION OF SMALL VORTICITY IN
THE FLOW OF THE BURNT MATTER BEHIND A

CURVED FLAME FRONT

In this section, we discuss the simplifying assumptio
which can be used in describing the dynamics of corruga
flames. We start with the propagation of a curved lami
flame in a tube with boundary conditions of adiabatic wa
and ideal slip at the walls. The advantage of such a geom
is that the shape of a curved flame front in a tube may
limited by only one stationary cell, which is easier for ana
sis than the fractal flame shape consisting of a large num
of cells of different sizes imposed on each other@5,16#. Ac-
cording to the numerical simulations@13,15,24#, a flame cell
may be described as a cusp pointing to the burnt matter
a hump directed to the fresh fuel mixture. Taking into a
count the tube geometry, we choose scaled variables in
form r5(y,j), u5(w,y), where j is the coordinate axis
along the walls. To be particular, we take the reference fra
of a planar flame front, in which the fuel mixture at infinit
moves towards the flame with velocityu5ej . As we pointed
out in the Introduction, we are interested first of all in t
flow of the burning products. If the flame front is planar, th
the velocity and pressure behind the flame are uniformu
5Qej , P52Q11 @12#, but in the case of a curved flam
the flow is different from the uniform one. Velocity deviatio
from the planar flow in the products of burning,ũ5u
2Qej , satisfies the equation

]ũ

]t
1Q

]ũ

]j
1~ ũ•“ !ũ1Q“P50. ~12!

Equation~12! may be also presented in the form

]ũ

]t
1Q

]ũ

]j
2ũ3v1“S ũ2

2
1QP D 50 ~13!

or

S ]

]t
1Q

]

]j D“3ũ2“3~ ũ3v!50, ~14!

where v5“3u denotes vorticity@6#. The characteristic
flow behind a curved flame cell obtained in the numeri
simulations@13# is shown in Fig. 2. An important point abou
Fig. 2 is that, in spite of the curved flame shape, the m
velocity component in the flow of the burnt matter is det
mined by the uniform drift velocityQej , while the velocity
deviation from the uniform flow is rather weak,ũ!Q. Ac-
cording to Ref.@12#, the relative role of the velocity devia
tion may be estimated asũ/Q} f /l, wheref and l are the
characteristic amplitude and width of the flame cell. Dire
numerical simulations of the flame dynamics show that
amplitude of one cell of a curved flame is rather small,f /l
50.2520.35, even for realistically large thermal expansio
02631
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Q55210, both for 2D and 3D geometry@13,15,24#. Actu-
ally, this small curvature of the flame front is the reason w
the analytical theory developed in the limit of weak nonli
earity is so successful in describing the dynamics of a sin
flame cell@12,14#. The relative role of vorticity in the flow of
burning products may be specified by the combinat
vl/Q. It was shown in Ref.@12# that the vorticity effects
behind a curved flame front are as small asvl/Q}( f /l)2.
The secondary role of vorticity in the DL instability has be
discussed for a long time@11,19,22#. Particularly, it has been
demonstrated in Ref.@11# that vorticity is just a by-product
of the DL instability, which may be neglected completely f
small thermal expansion,Q21!1. The assumption of zero
vorticity in the burnt matter was the basis of the Frank
equation@19#. However, neglecting the vorticity in the burn
gas for realistically large expansion factorsQ55210, one
comes to an incorrect dispersion relation at the linear stag
the DL instability. Therefore in the present paper we ta
vorticity into account in the linear approximation. We pr
pose to neglect the last term of Eq.~14!, namely ũ3v,
which stands for the nonlinear coupling between the flam
generated vorticity and the small deviation of the flow velo
ity from the drift velocity. According to the above estimate
the role of this nonlinear term is as small asuũ3vul/Q2

}( f /l)350.0120.04, which is definitely beyond the com
putational accuracy of the direct numerical simulatio
@13,15,24#. Using such an approximation~below we will call
it the approximation of small vorticity!, we reproduce cor-
rectly the linear dispersion relation of the DL instability fo
any expansion factor of the burning matter. Indeed, in t
case Eq.~14! becomes

S ]

]t
1Q

]

]j D“3ũ50, ~15!

FIG. 2. Characteristic velocity field behind a curved flame fron
2-3
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BYCHKOV, ZAYTSEV, AND AKKERMAN PHYSICAL REVIEW E 68, 026312 ~2003!
with the solutions corresponding to the mode of vortic
drift,

S ]

]t
1Q

]

]j D ũv50, ~16!

and to the potential mode“3ũp50, ¹2ũp50 with

ỹp5
1

4p2E ỹpk exp~2kj1 ik•y!d2k, ~17!

w̃p52F̂21
“'ỹp . ~18!

HereF̂ stands for the DL operator,

F̂F5
1

4p2E kFk exp~ ik•y!d2k, ~19!

whereFk is the Fourier transform ofF, and“' corresponds
to the“ component in the plane perpendicular to the wa
One more important property of the potential mode is

S ]

]t
1Q

]

]j D ũp1“S ũ2

2
1QP D 50, ~20!

which means that the dynamical pressure,ũ2/21QP, satis-
fies the Laplace equation in the burnt matter,

¹2S ũ2

2
1QP D 50. ~21!

Obviously, the dynamical pressure obeys the Laplace eq
tion in the fuel mixture ahead of the flame front too becau
the flow in the fuel mixture is potential. The solution to E
~15! in the fuel mixture is

y511 ỹ511
1

4p2E ỹk exp~kj1 ik•y!d2k, ~22!

w5F̂21
“'ỹ, ~23!

P5
1

2
2F̂21

]y

]t
2

ũ2

2
. ~24!

Taking matching conditions~10!, ~11! at a flame front,
F(r ,t)5j2 f (y,t)50, in the linear approximation

ỹ15 ỹ2 , w15w22~Q21!“' f , ỹ25
] f

]t
~25!

and substituting the modes~16!–~18!, ~22!–~24!, we come to
the equation for the flame front perturbations,

~Q11!
]2f

]t2
12QF̂

] f

]t
2Q~Q21!F̂2f 50, ~26!
02631
.
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e

which reproduces correctly the DL dispersion relation
any thermal expansion including the realistically large e
pansion factorsQ55210 @6#. It is important that we do not
neglect the mode of vorticity driftuv in the burnt matter
behind a corrugated flame front, but instead we neglect o
the nonlinear coupling between the potential mode and
vorticity mode. Neglecting vorticity completely similar t
Refs.@11,19,22#, we would come to another dispersion rel
tion

] f

]t
2

Q21

2
F̂f 50, ~27!

which holds only in the limit of small thermal expansionQ
21!1. For realistically large expansion factorsQ55
210, dispersion relation~27! provides only qualitative, but
not quantitative description of the DL instability. On the co
trary, the present approximation of small but nonzero vor
ity allows both the qualitative and the quantitative studies
the flame instability.

Taking into account the nonlinear corrections to Eqs.~25!
and ~26! in the limit of weak nonlinearity (“' f )2!1, we
can demonstrate that the approximation of small vortic
describes well the propagation velocity of curved station
flames and stability limits of these flames. As a matter
fact, in that case we just have to reproduce the calculation
Refs. @12,14#, which is a long, but straightforward, proce
dure. A much subtler question is if the approximation
small vorticity can describe properly the dynamics
strongly corrugated fractal flames. A fractal structure impl
the self-similar properties of a flame front at different leng
scales@5,16,17#. Because of the self-similarity every larg
cell at a flame front reproduces the shape of small cells
those observed for the flames propagating in relatively n
row tubes@13,15,24#. Then the characteristic ratiof /l re-
mains small for any cell of the fractal cascade, and the n
linear effects related to the flame-generated vorticity may
neglected even for strongly corrugated fractal flames.

IV. COORDINATE-FREE EQUATION AT A FLAME FRONT
OF ZERO THICKNESS

In the present section, we derive coordinate-free equat
at a flame front of zero thickness ignited at a point. Taki
into account the approximation of small vorticity, in the lab
ratory reference frame, we can write Eq.~2! in the form

]u

]t
1“p50, ~28!

wherep5qP1u2/2 is the dynamic pressure. All variable
at the flame front~e.g.,u2 , u1 , Vs , etc.! depend on time
and on the coordinate along the frontr s , see Fig. 1. Respec
tive derivatives in space“s coincide with the tangential de
rivative along the flame front,“s5et•“, but the time de-
rivative is related to the normal derivative in space,

]

]ts
5

]

]t
2Vs

]

]n
, ~29!
2-4
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COORDINATE-FREE DESCRIPTION OF CORRUGATED . . . PHYSICAL REVIEW E68, 026312 ~2003!
since the flame front propagates locally with the veloci
2nVs . The velocity field ahead of the flame front is pote
tial, u5“f, ¹2f50, which leads to the Bernoulli integra

]f

]t
1p50, ~30!

taking the form

]f2

]ts
1Vsun21p250 ~31!

exactly at the flame front. The velocity field behind the flam
may be presented as a combination of a potential mode a
vorticity mode u5up1uv , satisfying the equationsup
5“f, ¹2f50, and

]uv

]t
50. ~32!

It is interesting to note that the vorticity mode is time ind
pendent in the approximation of small vorticity similar to th
well-known solution of the DL instability at a spherical flam
propagating outwards from a point of ignition@26#. Taking
into account Eq.~29!, the last property may be also present
as

]uv

]ts
52Vs

]uv

]n
. ~33!

The respective Bernoulli integral at the flame front in t
burnt matter is

]f1

]ts
1Vsupn11p15const. ~34!

Taking into account that the velocity potential is defined w
the accuracy of a time-dependent function@6#, we may drop
the constant in the last equation. The boundary conditions
the velocity potentials at the flame front follow from Eqs.~8!
and ~9!,

]f2

]n
5un2512Vs , ~35!

]f1

]n
5upn15Q2Vs2uvn1 . ~36!

According to the Green solution to the Laplace equation
harmonic function¹2f50 at a pointr of a domainG with
a surfaceS and a normal unit vectornout pointing outwards
may be found using the boundary conditions at the surfa

bf~r !5E E
S
F 1

ur s2r u
]f~r s!

]nout

1f~r s!nout•
r s2r

ur s2r u3
GdS~r s!, ~37!
02631
d a

or

a

e,

whereb54p if r is insideG, b52p if r is on the surfaceS,
andb50 if r is outsideG. Then potentialsf2 , f1 at the
flame front satisfy the following equations:

f2~r !5
1

2pE E
S
F 12Vs

ur s2r u
1f2n•

r s2r

ur s2r u3
GdS~r s!,

~38!

f1~r !52
1

2pE E
S
FQ2Vs2uvn1

ur s2r u

1f1n•
r s2r

ur s2r u3
GdS~r s!, ~39!

where all the values under the integrals depend onr s ~except
for r , of course!. Equations~38! and ~39! are integral equa-
tions, which determine the velocity potentials at the flam
front, if the vorticity component of the velocity field is
known just behind the flame. Therefore, we have to find
relation between the potential modes and the vorticity mo
at the flame front. For that purpose, we write the continu
equation~1! for the vorticity mode in the form

]uvn1

]n
1“s•uvt150, ~40!

and using Eq.~33! we reduce it to

]uvn1

]ts
5Vs“s•uvt1 . ~41!

The jump condition for the tangential velocityut25ut1 ,
@Eq. ~6!#, leads tout22upt15uvt1 and couples the tangen
tial velocity component of the vorticity mode and the velo
ity potentials as

“s~f22f1!5uvt1 . ~42!

Then, taking into account Eq.~41! we find the desired rela
tion between the potential modes and the normal velo
component of the vorticity mode used in Eq.~39!:

]uvn1

]ts
5Vs“s

2~f22f1!. ~43!

Finally, we have to couple the potentials. For that purpo
we substitute Eqs.~31! and ~34! into the condition of pres-
sure jump at the flame front~11!,

]

]ts
~f12Qf2!5Q~Q21!2

u1
2

2
1Q

u2
2

2
2Vsun1

1Vsuvn11QVsun2 . ~44!

Using Eqs.~8!–~10!, we can reduce Eq.~44! to
2-5
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]

]ts
~f12Qf2!5

Q21

2
u2

2 2~Q21!Vs
21~Q21!Vs

1Vsuvn11
~Q21!2

2
. ~45!

Introducing the designations

C5
f12Qf2

Q21
, V5

uvn1

Q21
, ~46!

we can rewrite the final set of equations at the flame fron
the form

f2~r !5
1

2pE E
S
F 12Vs

ur s2r u
1f2n•

r s2r

ur s2r u3
GdS~r s!,

~47!
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n

C~r !1
Q11

Q21
f2~r !5

1

2pE E
S
F V21

ur s2r u

2~C1f2!n•
r s2r

ur s2r u3
GdS~r s!,

~48!

]V

]ts
52Vs¹s

2~f21C!, ~49!

]C

]ts
5

1

2
u2

2 2Vs
21~11V!Vs1

Q21

2
. ~50!

Besides, velocity just ahead of the flame front is determin
from Eq. ~37! as
u2~r !5
1

4pE E
S
F ~12Vs!

r s2r

ur s2r u3
2f2

]

]n S r s2r

ur s2r u3
D GdS~r s!. ~51!
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Then the flame front velocity may be calculated asVs
5un221 @Eq. ~8!#, using Eq. ~51!. The system of Eqs
~47!–~51! contains only values and variables at the fla
front, thus reducing the 3D problem@Eqs.~1!, ~2!, ~8!–~11!#
in the bulk of the gas flow to a 2D problem of the flam
dynamics as a discontinuity surface.

The system of Eqs.~47!–~51! holds for any thermal ex-
pansion of the burning matter including the realistic exp
sion factorsQ55210, when the corrugated flame sha
generates vorticity behind the flame front. It is interesting
compare the above equations to the Frankel equation@19#
obtained under the assumption of a potential flow in
burnt matter. As is known, the flow of the burnt gas may
treated as potential in the case of small thermal expans
Q21!1 @11#. In that case, Eq.~49! takes the form of the
Laplace equation on a closed surface¹s

2(f21C)50,
which has the only solutionf21C5const. Since the po
tential of a double layer with constant density is also co
stant, then, in agreement with Ref.@19#, Eq. ~48! reduces to
the velocity potential of a single layer,

f2~r !52
Q21

4p E E
S

dS~r s!

ur s2r u
1const. ~52!

Then after calculations, similar to Ref.@19#, we come to the
Frankel equation

Vs2152un25
Q21

2 F12
1

2pE E
S

]

]n

1

ur s2r u
dS~r s!G .

~53!
e

-

o

e
e
n,

-

Equation~53! may be also reduced to the Sivashinsky eq
tion @11# in the case of weak nonlinearity, see Ref.@19#.

An interesting feature of Eqs.~47!–~51! is that the system
obtained involves indirectly the second-order derivative
time, contrary to the Sivashinsky and Frankel equatio
which are only of the first order. The difference between
equations of the second and the first order in time may
crucial in the description of phenomena such as ‘‘tu
flames’’ @27# and flame-shock interaction@28,29#.

V. EQUATIONS AT A FLAME FRONT
OF FINITE THICKNESS

In the preceding section we have considered equation
an infinitely thin flame front. However, according to the D
theory, the instability growth rate of small perturbations a
flame front is infinitely large if the perturbation waveleng
is not limited from below by the cut off wavelengthLc
5lc /R ~proportional to the finite flame thickness!. In order
to describe the thermal stabilization of the DL instability o
has to take into account the finite flame thickness in
conservation laws~5!–~7! @9#. Rigorous consideration of the
finite flame thickness in Eqs.~5!–~7! requires rather long
calculations and will be presented elsewhere. In the pre
section, we demonstrate how the effects of the thermal
bilization may be taken into account in the system@Eqs.
~47!–~51!# in a simplified way similar to the classical Mark
stein approach@30#. For that purpose, we can observe th
the development of the DL instability at both linear and no
linear stages involves only one parameter of length dim
sion, namely the cutoff wavelengthlc @9,12–14#. Similar to
the Markstein approach, we take Eq.~8! in the form
2-6
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un21Vs512LY, ~54!

whereY is stretch of the flame front~relative increase of the
elementary surface areaD at the flame front per unit time
Y[D21dD/dts @31#! and L is a coefficient characterizing
the thermal stabilization of the DL instability. Other conse
vation laws~9!–~11! are considered without any change. W
are going to find the relation betweenL andLc and useLc
instead ofL. In the linear case of a slightly perturbed flam
front propagating in a tube, stretch may be calculated as@9#

Y5“'•w21¹'
2 f , ~55!

and one has to replace the last equation of Eq.~25! by

] f

]t
2 ỹ25L~“'•w21¹'

2 f !. ~56!

Then the system@Eqs.~16!–~18!, ~22!–~25!, ~56!# reduces to
the dispersion equation

~Q11!
]2f

]t2
12QF11L

Q11

2Q
F̂GF̂] f

]t

2Q~Q21!F12L
Q11

Q21
F̂GF̂2f 50. ~57!

As we can see from Eq.~57!, the DL instability is stabilized
at the perturbation wave numberkc , satisfying

12Lkc

Q11

Q21
50, ~58!

which corresponds to the cutoff wavelengthLc52p/kc ,
that is,

L5
1

2p

Q21

Q11
Lc . ~59!

Thus Eq.~54! takes the form

un21Vs512
1

2p

Q21

Q11
LcY, ~60!
02631
-

whereLc5lc /R is the scaled cutoff wavelength of the D
instability ~the dimensional value of the cutoff waveleng
lc5LcR may be measured experimentally@32#!.

Taking into account the stretch effects, we find the follo
ing boundary conditions for the velocity potential:

]f2

]n
5un2512Vs2LY, ~61!

]f1

]n
5upn15Q2Vs2QLY2uvn1 , ~62!

and the solution to the Laplace equation at the flame fro

f2~r !5
1

2pE E
S
F12Vs2LY

ur s2r u
1f2n•

r s2r

ur s2r u3GdS~r s!,

~63!

f1~r !52
1

2pE E
S
FQ2Vs2QLY2uvn1

ur s2r u

1f1n•
r s2r

ur s2r u3
GdS~r s!. ~64!

The relation~43! is not affected by the finite flame stretch
but Eq.~45! is reduces to

]

]ts
~f12Qf2!5

Q21

2
u2

2 2~Q21!Vs
21~Q21!Vs

1Vsuvn12~Q21!~Vs1Q21!LY

1
~Q21!2

2
@11~LY!2#. ~65!

Then the final set of equations at the flame front takes
form
f2~r !5
1

2pE E
S
F 1

ur s2r u S 12Vs2
Q21

Q11

LcY

2p D1f2n•
r s2r

ur s2r u3
GdS~r s!, ~66!

C~r !1
Q11

Q21
f2~r !5

1

2pE E
S
F 1

ur s2r u S V211
Q21

Q11

LcY

2p D2~C1f2!n•
r s2r

ur s2r u3GdS~r s!, ~67!

]V

]ts
52Vs¹s

2~f21C!, ~68!

]C

]ts
5

1

2
u2

2 2Vs
21~11V!Vs2

Q21

Q11

LcY

2p
~Vs1Q21!1

Q21

2 F11S Q21

Q11

LcY

2p D 2G . ~69!
2-7
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The scaled cutoff wavelength of the DL instability,Lc , is
the only parameter of length dimension involved in Eq
~66!–~69! and, obviously,Lc is the smallest length scale th
has to be resolved in the numerical solution to the ab
equations.

VI. EQUATIONS AT A TURBULENT FLAME FRONT

In this section, we will show how external turbulence m
be included into Eqs.~66!–~69! using the approximation o
small vorticity both upstream and downstream the fla
front. Small effects of vorticity in the flamelet regime o
turbulent burning has been discussed recently in R
@21,22#, where vorticity has been neglected completely. T
approximation of the present paper is much less restrict
though, of course, the accuracy of such an approximatio
considerably lower for turbulent flames in comparison w
the laminar ones because the vorticity effects are obviou
stronger for turbulent flames. Still, the present approximat
is consistent with the Taylor hypothesis of ‘‘stationary’’ tu
ar
dg
s

02631
.

e

e

s.
e
e,
is

ly
n

bulence@1#, which follows from Eq.~28! applied to the tur-
bulent flow of the fuel mixture. The Taylor hypothesis h
not been proven rigorously, but it was used in the majority
papers devoted to turbulent burning in the flamelet regim
see, for example, Refs.@3,21,33#. The recent investigation o
the flame dynamics in a flow with temporal pulsations
external turbulent velocity@34# has demonstrated that th
Taylor hypothesis does provide a good model for the flam
regime of burning.

In the case of turbulent flames, the upstream flow in
fuel mixture contains both a potential mode and a turbul
mode of vorticity drift ue , and the boundary condition fo
the velocity potential at the flame front is

]f2

]n
5upn25un22uen2512Vs2uen22LY, ~70!

whereuen2 is the normal component of the external turb
lent velocity at the flame front, and the respective solution
the Laplace equation ahead of the front is
f2~r !5
1

2pE E
S
F 1

ur s2r u S 12Vs2uen22
Q21

Q11

LcY

2p D1f2n•
r s2r

ur s2r u3
GdS~r s!, ~71!

with the velocity in the fuel mixture at the flame front,

u25ue1
1

4pE E
S
F S 12Vs2uen22

Q21

Q11

LcY

2p D r s2r

ur s2r u3
2f2

]

]n S r s2r

ur s2r u3D GdS~r s!. ~72!

The equation relating the vorticity modes and the potential modes at the flame front takes the form

]

]ts
~uvn12uen2!5Vs¹s

2~f22f1!, ~73!

while the equation coupling two potential modes upstream and downstream the flame front coincides with Eq.~65!. Then the
final system of equations at a turbulent flame front is

f2~r !5
1

2pE E
S
F 1

ur s2r u S 12Vs2uen22
Q21

Q11

LcY

2p D1f2n•
r s2r

ur s2r u3GdS~r s!, ~74!

C~r !1
Q11

Q21
f2~r !5

1

2pE E
S
F 1

ur s2r u S V2
uen2

Q21
211

Q21

Q11

LcY

2p D2~C1f2!n•
r s2r

ur s2r u3
GdS~r s!, ~75!

]

]ts
S V2

uen2

Q21D52Vs¹s
2~f21C!, ~76!

]C

]ts
5

1

2
u2

2 2Vs
21S 12

Quen2

Q21
1V DVs2

Q21

Q11

LcY

2p
~Vs1Q21!1

Q21

2 F11S Q21

Q11

LcY

2p D 2G . ~77!
mp-
cal
c
h a
Of course, in reality the turbulent velocity fieldue at the
flame front does not coincide with the velocity field f
ahead of the flame front. However, the present knowle
about the initial ‘‘free’’ turbulence induced in gas turbine
e

and car engines is very limited. Though the standard assu
tion about the external velocity field used in the numeri
simulations@21,22,33,34# is the assumption of an isotropi
Kolmogorov turbulence, one cannot say for sure that suc
2-8
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turbulence takes place in combustion experiments@25,35,36#
and in industrial energy production devices. Therefore,
stead of making assumptions about turbulence far ahea
the flame front, at present one can make assumptions dire
about the turbulent velocity field at the flame front.

VII. EQUATIONS AT A FLAME FRONT IN A
TWO-DIMENSIONAL GEOMETRY

Though Eqs.~74!–~77! do reduce the hydrodynamic prob
lem in the bulk of the gas flow to a set of equations at
flame front, the resulting system is still rather difficult fo
numerical solution. By this reason, it is natural to expect t
the first modeling of Eqs.~74!–~77! will be performed in the
2D geometry rather than in the 3D one. In this section,
present the 2D version of the system@Eqs. ~74!—~77!#, for
which the flame front is a corrugated loop instead of a s
face. We start with the infinitely thin laminar flame. In th
case, the integral expression for the Green solution to
Laplace equation~37! takes the form

gf~r !5E
S
F ]f~r s!

]nout
lnur s2r u2f~r s!nout•

r s2r

ur s2r u2
GdS~r s!,

~78!

where the curveS is the boundary of a 2D domainG. The
factor g is zero (g50) if r is outsideG, g5p if r belongs
to the curveS, andg52p if r is insideG. Therefore, at the
flame front we have the following expressions for the velo
ity potentials:

f1~r !52
1

pES
F ~Q2Vs2uvn1!lnur s2r u

2f1n•
r s2r

ur s2r u2
GdS~r s!, ~79!

f2~r !5
1

pES
F ~12Vs!lnur s2r u2f2n•

r s2r

ur s2r u2
GdS~r s!.

~80!
02631
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Equation~80! is the 2D counterpart of Eq.~47!. The coun-
terpart of Eq.~48! follows from Eqs.~79! and ~80!,

C~r !1
Q11

Q21
f2~r !5

1

pES
F ~V21!lnur s2r u

1~C1f2!n•
r s2r

ur s2r u2
GdS~r s!.

~81!

Equation~49! and~50! remain the same in the 2D geomet
as they were in the 3D one,

]V

]ts
52Vs¹s

2~f21C!, ~82!

]C

]ts
5

1

2
u2

2 2Vs
21~11V!Vs1

Q21

2
, ~83!

and the velocity just ahead of the flame front may be fou
from Eq. ~78!:

u2~r !5
1

2pES
F2~12Vs!

r s2r

ur s2r u2

1f2

]

]n S r s2r

ur s2r u2
D GdS~r s!. ~84!

The set of equations~80!–~84! presents a coordinate-fre
description of 2D laminar flames with infinitely small flam
thickness. Similar to Secs. V and VI, we may take into a
count stretch effects~produced by finite flame thickness! and
external turbulence. Then the system@Eqs.~80!–~84!# takes
the form
f2~r !5
1

pES
F S 12Vs2uen22

Q21

Q11

LcY

2p D lnur s2r u2f2n•
r s2r

ur s2r u2
GdS~r s!, ~85!

C~r !1
Q11

Q21
f2~r !5

1

pES
F S V2

uen2

Q21
211

Q21

Q11

LcY

2p D lnur s2r u1~C1f2!n•
r s2r

ur s2r u2
GdS~r s!, ~86!

]

]ts
S V2

uen2

Q21D52Vs¹s
2~f21C!, ~87!

]C

]ts
5

1

2
u2

2 2Vs
21S 12

Quen2

Q21
1V DVs2

Q21

Q11

LcY

2p
~Vs1Q21!1

Q21

2 F11S Q21

Q11

LcY

2p D 2G , ~88!
2-9
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u2~r !5ue2
1

2pES
F S 12Vs2uen22

Q21

Q11

LcY

2p D r s2r

ur s2r u2
2f2

]

]n S r s2r

ur s2r u2D GdS~r s!. ~89!
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VIII. SUMMARY

In the present paper, we have reduced the whole syste
hydrodynamic equations in the bulk of the gas flow ahead
a corrugated flame front and behind the front to a set
equations at the flame front; see Eqs.~47!—~50! for a lami-
nar flame front of zero thickness, Eqs.~66!–~69! for a lami-
nar flame front of finite thickness, and Eqs.~74!—~77! for a
flame front in an external turbulent flow. The derived equ
tions may provide considerable gain in the numerical sim
lations of laminar and turbulent corrugated flames in
flamelet regime. First, the derived equations reduce the
mension of the problem by one, since a 3D problem of
gas flow is replaced by a 2D problem of the flame fro
dynamics considered as a geometrical surface. Second
smallest length scale involved in the equations, which ha
be resolved in the numerical simulations, is the cutoff wa
length of the DL instabilitylc . This length scale is almos
three orders of magnitude larger that the thickness of
reaction zone, which has to be resolved in the direct num
cal simulations. Indeed, the thickness of the reaction z
with realistically large activation energy of the chemical r
A

.
d

-

.

os

m
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actions is usually about 0.1 of the flame thickness, see R
@13,15,24#. On the other hand, the cutoff wavelength typ
cally exceeds the flame thickness by a factor of 40250
@7,37#. Thus the cutoff wavelengthlc is larger than the
thickness of the reaction zone by a factor of 4002500.

With all these advantages of the obtained equations~74!–
~77!, one may hope to model turbulent burning in realis
energy production devices, for which the characteris
length scale of the hydrodynamic flow (102100) cm ex-
ceeds the thickness of the reaction zone by 526 orders of
magnitude, making these flows far beyond the reach of
direct numerical simulations. Still, as a next step of the
search, the equations obtained have to be validated by c
paring the numerical results of the model to the experime
and the direct numerical simulations. This will be the subj
of the future work.
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